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Abstract
In this letter, we introduce a new generalized linearizing transformation (GLT)
for second-order nonlinear ordinary differential equations (SNODEs). The
well-known invertible point (IPT) and non-point transformations (NPT) can be
derived as sub-cases of the GLT. A wider class of nonlinear ODEs that cannot
be linearized through NPT and IPT can be linearized by this GLT. We also
illustrate how to construct GLTs and to identify the form of the linearizable
equations and propose a procedure to derive the general solution from this GLT
for the SNODEs. We demonstrate the theory with two examples which are of
contemporary interest.

PACS numbers: 02.30.Hq, 05.45.−a

Linearizing nonlinear ordinary differential equations (NODEs) is still an open problem in the
theory of differential equations [1–3]. If one raises the question whether a given arbitrary
nonlinear ODE is linearizable or not, no definitive answer can be given in general. Three main
points which need attention for further understanding of this problem are: (i) there is still no
comprehensive literature available on the types of transformations that can linearize the ODEs,
(ii) the general form of linearizable equation also differs from transformation to transformation
and (iii) higher-order ODEs possess a greater variety of linearizing transformations than the
lower-order ODEs. Due to these reasons no general treatment on linearizing transformations
or linearizable equations has been formulated so far.

In this letter, we make an attempt to unify the linearizing transformations known for
the case of second-order nonlinear ODEs (SNODEs) and extend their scope. As far as the
SNODEs are concerned it has been shown that, in general, one can linearize them through
two different kinds of transformations. One is the well-known invertible point transformation
(IPT) and the other is the non-point transformation (NPT). As far as the IPT is concerned it
has been shown [3–8] that the most general SNODE that can be linearized through such a
transformation,

X = F(t, x), T = G(t, x), (1)
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is of the form

ẍ = D(t, x)ẋ3 + C(t, x)ẋ2 + B(t, x)ẋ + A(t, x), (2)

where over dot denotes differentiation with respect to t and the functions A,B,C and D should
satisfy the following two equations:

3Dtt + 3BDt − 3ADx + 3DBt + Bxx − 6DAx + CBx − 2CCt − 2Ctx = 0,

Ctt + 6ADt − 3ACx + 3DAt − 2Btx − 3CAx + 3Axx + 2BBx − BCt = 0.
(3)

The transformation (1) converts equation (2) into the linear ‘free particle’ equation,

d2X

dT 2
= 0. (4)

On the other hand, it has also been shown that one can consider NPTs of the form

X = F̂ (t, x), dT = Ĝ(t, x) dt, (5)

and linearize the given SNODE. The most general SNODE that can be linearized through the
transformation (5) possess the form [9]

ẍ + A2(t, x)ẋ2 + A1(t, x)ẋ + A0(t, x) = 0. (6)

The set of relations between the functions Ai’s, i = 0, 1, 2, and the transformation (5) is given
by

A2 = (ĜF̂ xx − F̂ xĜx)/K,

A1 = (2ĜF̂ xt − F̂ xĜt − F̂ t Ĝx)/K, (7)

A0 = (ĜF̂ tt − F̂ t Ĝt )/K

with K = F̂ xĜ �= 0. The NPT also transforms equation (6) to the free particle equation (4).
The functions Ai’s, i = 0, 1, 2, should satisfy the following relations [9]:
(i)

S1(t, x) = A1x − 2A2t = 0, (8)

S2(t, x) = 2A0xx − 2A1tx + 2A0A2x − A1xA1 + 2A0xA2 + 2A2t t = 0. (9)

(ii) If S1(t, x) �= 0 and S2(t, x) �= 0, then

S2
2 + 2S1t S2 − 2S2

1A1t + 4S2
1A0x + 4S2

1A0A2 − 2S1S2t − S2
1A2

1 = 0, (10)

S1xS2 + S2
1A1x − 2S2

1A2t − S1S2x = 0. (11)

The NPT is also called a generalized Sundman transformation, see for example [10, 11].
Even though both the IPT and NPT transform the second-order nonlinear ODE to the free

particle equation (4), the NPT has some disadvantages over the former. For example, in the
case of IPT one can unambiguously invert the free particle solution and deduce the solution
of the associated nonlinear equation, whereas in the case of NPT it is not so straightforward
due to the non-local nature of the independent variable.

In this work, we unearth a more general transformation,

X = F(t, x), dT = G(t, x, ẋ) dt, (12)

and show that this transformation can be utilized to linearize a wider class of SNODEs and, in
particular, certain equations which cannot be linearized by the NPT and IPT. We designate this
transformation as the generalized linearizing transformation (GLT). If the function G in (12) is
independent of the variable ẋ then it becomes an NPT (vide equation (5)). On the other hand,
if G is a perfect differentiable function then it becomes an IPT, that is G(t, x, ẋ) = d

dt
Ĝ(t, x),
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then dT = dĜ
dt

dt ⇒ T = Ĝ(t, x). We stress here that (12) is a unified transformation as it
includes IPT and NPT as special cases.

We demonstrate our above assertion with the case where G is a polynomial function in ẋ

and in particular where it is linear in ẋ with coefficients which are arbitrary functions of t and x.
Indeed, even such a simple case leads to interesting results as we see below. To be specific,
we focus here on the case

X = F(t, x), dT = (G1(t, x)ẋ + G2(t, x)) dt. (13)

We note that in equation (13) even if we consider X = F(t, x, ẋ) and dT = (G1ẋ+G2) dt , after
substitution into (16), we deduce that Fẋ = 0 and so the form (13) is taken. Generalizations
involving higher degree polynomials in ẋ for G(t, x, ẋ) will be dealt with elsewhere.

Substituting the transformation (13) into the free particle equation (4), the most general
SODE that can be linearized through the GLT (13) can be shown to be of the form

ẍ + A3(t, x)ẋ3 + A2(t, x)ẋ2 + A1(t, x)ẋ + A0(t, x) = 0 (14)

and the functions Ai’s i = 0, 1, 2, 3, are connected to the transformation functions F and G
through the relations

A3 = (G1Fxx − FxG1x)/M,

A2 = (G2Fxx + 2G1Fxt − FxG2x − FtG1x − FxG1t )/M,

A1 = (2G2Fxt + G1Ftt − FxG2t − FtG2x − FtG1t )/M,

A0 = (G2Ftt − FtG2t )/M

(15)

with M = FxG2 − FtG1 �= 0.
For the given equation one has explicit forms for the functions Ai’s. Now solving

equation (15) with the known Ai’s, one can get the linearizing transformation functions F
and G. Once F and G are known then using (13) we can transform (14) to the free particle
equation (4) and solving the latter one can get the first integral. However, it is difficult to
integrate it further unambiguously to obtain the general solution due to the non-local nature
of the transformation (13). We are able to overcome this problem also here and devise a
general procedure to construct the general solution. In the following, we briefly describe the
procedure.

Integrating the free particle equation (4) once, we get

dX

dT
= I1 = C(t, x, ẋ), (16)

where I1 is the first integral. Now rewriting (16) for ẋ, we get

ẋ = f (t, x, I1), (17)

where f is a function of the indicated variables. Due to non-local nature of the independent
variable we need to consider only a particular solution for the free particle equation (4), that is

X(t, x) = I1T (18)

from which we get

x = g(t, T , I1), (19)

where g is a function of t, T and I1. Making use of relations (17) and (19), equation (13) can
be rewritten in the form

dT = h(t, T , I1) dt, (20)
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where again h is a function of t, T and I1. We find that in the case of linearizable equations
one can separate the variables T and t in equation (20) and integrate the resultant equation
which in turn leads to the general solution.

In the above, we have demonstrated how to deduce linearizing transformation and the
general solution for the given equation. On the other hand, one can construct both linearizing
transformation and specific linearizable equations. To illustrate this let us analyse a particular
but important case of equation (14), namely, A3 = 0 and A2 = 0 in equation (15). However,
the other choices, for example A3 = A1 = 0 and A2 and A0 �= 0, also lead to many new
linearizable equations. These will be dealt with separately. Solving the first and second
equation in (15) with this restriction, we obtain

G1 = a(t)Fx, G2 = a(t)Ft − (atx + b(t))Fx, (21)

where a and b are arbitrary functions of t. By using equation (21) in the last two equations in
(15), we get

A1 = Sx +
at

(atx + b)
S +

(att x + bt )

(atx + b)
, (22)

A0 = St +
at

(atx + b)
S2 +

(att x + bt )

(atx + b)
S, (23)

where

S(t, x) = Ft

Fx

. (24)

Solving equation (22), we get

S =
(
c(t) − btx − 1

2attx
2 +

∫
A1(atx + b) dx

)
(atx + b)

, (25)

where c(t) is an arbitrary function of t. Substituting equation (25) into (23), we obtain

A0 = at

(
c − btx − 1

2attx
2 +

∫
(atx + b)A1 dx

)2

(atx + b)3

+
ct − bttx − 1

2attt x
2 +

( ∫
((att x + bt )A1 + (atx + b)A1t ) dx

)
(atx + b)

. (26)

The explicit form of F can be determined by substituting the expression for S into (24) and
solving the resultant first-order partial differential equation for F. Once F is known G1 and
G2 can be fixed using the relation (21) which in turn provides us the GLT through (13). The
associated linearizable equation assumes the form ẍ + A1(t, x)ẋ + A0(t, x) = 0, where A0 is
given in equation (26) and A1 is the given function in this analysis.

To illustrate the procedure with a simple but non-trivial example, let us consider the case
A1 = kxq , where k and q are arbitrary parameters, and fix the arbitrary functions a, b and c
such as a(t) = t, b(t) = c(t) = 0, so that the equation (25) gives us

S = k

(q + 2)
xq+1. (27)

Once S is known F and A0 can be fixed through the relations (24) and (26) of the form

A0 = k2

(q + 2)2
x2q+1 and F = k

q + 2
t − 1

qxq
. (28)

The forms of A0 and A1 fix the linearizable equation (14) to the form

ẍ + kxq ẋ +
k2

(q + 2)2
x2q+1 = 0. (29)
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Since a(t) = t and b(t) = 0, from (21) we have

G1 = t

xq+1
, G2 = kt

q + 2
− 1

xq
. (30)

As a consequence the linearizing transformation turns out to be

X = k

q + 2
t − 1

qxq
, dT =

[
−t

(
k

q + 2
+

ẋ

xq+1

)
+

1

xq

]
dt. (31)

It is easy to check that equation (29) can be linearized to the free particle equation (4) through
the transformation (31).

Equation (29) and its sub-cases have been widely discussed in the contemporary literature.
In particular, Mahomed and Leach [4] have shown that equation (29) with q = 1 is one of the
SNODEs that can be linearized to the free particle equation (4) through the IPT X = k

3 t − 1
x

and T = t
x

− kt2

6 . Consequently, the group invariance and integrability properties of this
sub-case, namely, q = 1, and the general equation (29) have been studied extensively by
different authors, see for example [12–16]. However in the literature, equation (29) has been
shown to be linearizable to free particle equation only for the value q = 1. For other values
of q, the linearization of this equation through IPT or NPT was not known. But in the present
work we have proved above that one can linearize the entire class of equation (29) under the
one general transformation (31), irrespective of the value of q. One may note that choosing
q = 1 the GLT (31) coincides exactly with the point transformation for equation (29) with
the same parametric restriction. This example further confirms the arguments that IPT is a
sub-case of GLT.

In the following, we derive the general solution of (29) using our procedure discussed
through equations (16)–(20). Using (31) into equation (16), we obtain the first integral in the
form

I1 =
(

k
q+2xq+1 + ẋ

)
−t

(
k

q+2xq+1 + ẋ
)

+ x
. (32)

Rewriting (32) for ẋ, we get

ẋ = − k

q + 2
xq+1 +

I1

(1 + I1t)
x. (33)

Making use of the particular solution for the free particle equation given in equation (18) and
rewriting this for x in equation (31), we get

x =
(

1

q
(

k
q+2 t − I1T

)
) 1

q

. (34)

Substituting (33) and (34) in the second equation in (31), we obtain

dT = q

(
1

1 + I1t

)(
k

q + 2
t − I1T

)
dt. (35)

Rewriting equation (35) in the form

dT

dt
+

qI1

1 + I1t
T = kq

q + 2

(
t

1 + I1t

)
(36)

and integrating the resultant equation, (36), we get

T = (1 + I1t)
−q

(
I2 +

(1 + I1t)
q(qI1t − 1)

I 2
1 (2 + 3q + q2)

)
, (37)
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where I2 is the second integration constant. Substituting the resultant expression for T into
(34), we obtain the general solution of (29), that is

x(t) =
(

I1(q + 1)(q + 2)(1 + I1t)
q

q
(
k(1 + I1t)q+1 − I 2

1 I2(2 + 3q + q2)
)
) 1

q

, (38)

which is the same as the one obtained by Feix et al [14].
Equation (29) is not an isolated example that can be linearized through the GLT. In fact,

one can linearize a larger class of equations through this GLT and obtain the general solution.
This is mainly due to the presence of arbitrary functions, namely, a(t), b(t) and c(t) in the
determining equations for given A1(x, t). To demonstrate this, we consider a slightly more
general form

A1 = k1x
q + k2, A3 = A2 = 0, (39)

where k1, k2 and q are arbitrary constants, in equation (14). In the present example, we have
included an additive constant, k2, in the function A1 and left the other two functions A2 and
A3 the same as before. However, this additive constant itself enlarges the class of linearizable
equations considerably, as we see below.

Let us again fix the arbitrary functions a, b and c of the same form as in the previous
example, that is a(t) = t, b(t) = 0 and c(t) = 0, so that we get S = k2

2 x + k1
q+2xq+1. The

respective linearizable equation turns out to be

ẍ + (k1x
q + k2)ẋ +

k2
1

(q + 2)2
x2q+1 +

k1k2

q + 2
xq+1 +

k2
2

4
x = 0 (40)

and the GLT becomes

X = 2k1

q(q + 1)k2
−

(
1

qxq
+

2k1

q(q + 1)k2

)
exp

(
−q

2
k2t

)
,

dT =
[

1

xq

(
1 − k2

2
t

)
− t

(
ẋ

xq+1
+

k1

(q + 1)

)]
exp

(
−q

2
k2t

)
dt.

(41)

One may note that in the limit k2 → 0 both the linearizing transformations, (41), and the
linearizable equation, (40), reduce to the earlier example (vide equations (31) and (29),
respectively).

The associated first integral reads

I1 = dX

dT
=

(
k2
2 x + k1

q+2xq+1 + ẋ
)

−t
(

k2
2 x + k1

q+2xq+1 + ẋ
)

+ x
. (42)

Repeating the same steps given in the previous example one can get the general solution for
equation (40) in the form

x(t) = (I1 + t) exp

(
−k2

2
t

) (
I2 +

qk1

(q + 2)

∫ t

0
exp

(
−qk2

2
t ′
)

(I1 + t ′)q dt ′
)− 1

q

, (43)

where I2 is the second integration constant.
Next, we choose the arbitrary function a(t) in an exponential form, namely, a(t) = eαt ,

where α is a constant, with b(t) = c(t) = 0. In this case, we get

S =
(

k2 + α

2

)
x +

k1

q + 2
xq+1 and α =

√
k2

2 − 4λ, (44)
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where λ is an arbitrary parameter. The functions b, c and A1 give A0 through the relation (26)
which in turn gives us a new linearizable equation of the form

ẍ + (k1x
q + k2)ẋ +

k2
1

(q + 2)2
x2q+1 +

k1k2

(q + 2)
xq+1 + λx = 0. (45)

Proceeding further, we obtain the GLT in the form

X =
(

(α − k2)

2qλ
− (q + 2)

qk1xq

)
exp

(
−q

2
(k2 + α)t

)
,

dT =
[
(q + 2)

k1xq+1
ẋ +

(q + 2)

2k1xq
(k2 − α) + 1

]
exp

(
−

(
q

2
k2 +

(q − 2)

2
α

)
t

)
dt.

(46)

Now one can check that the transformations (41) and (46) transform (40) and (45) into the
free particle equation (4). The first integrals for equation (46) can be constructed of the form

I1 = dX

dT
= e−αt

(
ẋ + (k2+α)

2 x + k1
q+2xq+1

ẋ + (k2−α)

2 x + k1
q+2xq+1

)
, (47)

and the general solution takes the form

x(t) = (eαt − I1) exp

(
−1

2
(k2 + α)t

) (
I2 +

qk1

(q + 2)

∫ t

0

(
eαt ′ − I1

exp
(

1
2 (k2 + α)t ′

)
)q

dt ′
)− 1

q

,

(48)

where I2 is the second integration constant. Equations (43) and (48) can be integrated further
explicitly using the standard method [17]. To our knowledge, the solutions (43) and (48) are
new to the literature.

We note that in the case q = 1, the terms on the right-hand side in the second equation of
(46) can be written as a perfect derivative term and consequently leads us to the same IPT for
the equation (45), respectively, with q = 1 obtained in [15, 16].

In this paper, we have introduced a new generalized linearizing transformation which can
be used to linearize a class of equations that cannot be linearized by either IPT or NPT. In fact,
both IPT and NPT can be derived as sub-cases from the proposed GLT. Since the independent
variable is in a non-local form in the GLT, we have devised an algorithm to rewrite the new
variables in terms of old variables. Needless to say, this algorithm can also be used in the
case of NPT also. Importantly, we have illustrated our theory with certain concrete examples
which are of contemporary interest. Naturally, one can also construct GLTs involving more
general forms of ẋ in (12) and identify new linearizable equations. The procedure can also be
extended to higher-order ODEs. The details will be discussed separately.
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